FG: System Understanding of Radiation Belt Particle Dynamics through Multi-spacecraft and Ground-based Observations and Modeling

Dates: 2019 – 2024
Leaders: Hong Zhao, Lauren Blum, Sasha Ukhorskiy, and Xiangrong Fu
Research Areas: Primary – IMAG, Secondary – None

Topic

The Earth’s radiation belts are filled with energetic particles, which exhibit acceleration, transport, and loss processes under the influence of many physical mechanisms at timescales from minutes to days. Understanding the effectiveness and relative importance of physical mechanisms on radiation belt particles is of both scientific interest and practical needs. Since the discovery of Earth’s radiation belts 60 years ago, a lot of progress has been made on understanding the radiation belt dynamics based on in situ and ground-based observations as well as modeling efforts. Specifically, with recent missions such as Van Allen Probes, Arase, and CubeSats, many mysteries of radiation belt particles have been discovered. However, single-point measurements have limitations in revealing underlying physical mechanisms on the radiation belt particles due to spatial/temporal ambiguities and limited coverage. This focus group (FG) aims to deepen understanding of radiation belt particle dynamics on both local and global scales through coordinated measurements from multi-spacecraft as well as ground-based observations, combining with theoretical and modeling efforts. The science goals of this FG are to advance our understanding of newly explored topics which will greatly benefit from such coordinated measurements, specifically: 1) the physical mechanisms related to radiation belt electron acceleration and loss on short timescales (minutes to hours); 2) quantification of energetic electron precipitation into the atmosphere and the related physical mechanisms; 3) the properties and spatiotemporal distribution of waves in radiation belts and their effects on radiation belt particles; 4) dynamics of inner belt and slot region particles.

Visit the Wiki page for more information.